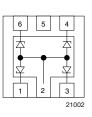

Vishay Semiconductors


4-Line (Quad) ESD Protection Diode Array in LLP75-6L

Features

- Compact LLP75-6L package
- Low package height < 0.6 mm
- 4-line ESD protection (quad)
- Low leakage current < 0.1 μA
- Low load capacitance C_D = 6 pF
- ESD-protection acc. IEC 61000-4-2
 - ± 8 kV contact discharge
 - ± 10 kV air discharge
- Surge current acc. IEC 6100-4-5 I_{PP} > 1.5 A
- Soldering can be checked by standard vision inspection. No X-ray necessary
- e4 precious metal (e.g. Ag, Au, NiPd, NiPdAu) (no Sn)
- Compliant to RoHS directive 2002/95/EC and in accordance to WEEE 2002/96/EC

Marking (example only)

Dot = Pin 1 marking XX = Date code

YY = Type code (see table below)

Ordering Information

Device name	Device name Ordering code		Minimum order quantity	
VESD09A4A-HSF	VESD09A4A-HSF-GS08	3000	15000	

Package Data

Device name	Package name	Type code	Weight	Molding compound flammability rating	Moisture sensitivity level	Soldering conditions
VESD09A4A-HSF	LLP75-6L	49	4.2 mg	UL 94 V-0	MSL level 1 (according J-STD-020)	260 °C/10 s at terminals

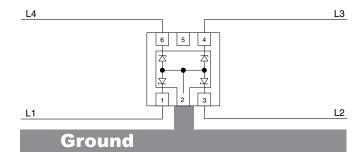
^{**} Please see document "Vishay Material Category Policy" www.vishay.com/doc?99902

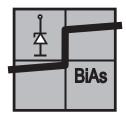
VESD09A4A-HSF

Vishay Semiconductors

Absolute Maximum Ratings

Rating	Test conditions			Value	Unit
Peak pulse current	BiAs-mode: each input (pin 1, 3 - 5) to ground (pin 2 and 6); acc. IEC 61000-4-5; $t_p = 8/20 \mu s$; single shot			1.5	Α
Peak pulse power	BiAs-mode: each input (pin 1, 3 - 5) to ground (pin 2 and 6); acc. IEC 61000-4-5; $t_p = 8/20~\mu s$; single shot			30	w
ESD immunity	acc. IEC61000-4-2; 10 pulses BiAs-mode: each input (pin 1, 3 - 5) to ground (pin 2 and 6)	contact discharge	V _{ESD}	± 8	kV
		air discharge	V _{ESD}	± 10	kV
Operating temperature	Junction temperature			- 40 to + 125	°C
Storage temperature		•	T _{STG}	- 55 to + 150	°C


BiAs-Mode (4-line Bidirectional Asymmetrical protection mode)


With the **VESD09A4A-HSF** up to 4 signal- or data-lines (L1 - L4) can be protected against voltage transients. With pin 2 connected to ground and pin 1, 3, 4 and 6 connected to a signal- or data-line which has to be protected. As long as the voltage level on the data- or signal-line is between 0 V (ground level) and the specified **Maximum Reverse Working Voltage** (**V**_{RWM}) the protection diode between data line and ground offer a high isolation to the ground line. The protection device behaves like an open switch.

As soon as any positive transient voltage signal exceeds the break through voltage level of the protection diode, the diode becomes conductive and shorts the transient current to ground. Now the protection device behaves like a closed switch. The Clamping Voltage (V_C) is defined by the BReakthrough Voltage (V_{BR}) level plus the voltage drop at the series impedance (resistance and inductance) of the protection device.

Any negative transient signal will be clamped accordingly. The negative transient current is flowing in the forward direction of the protection diode. The low Forward Voltage (V_F) clamps the negative transient close to the ground level.

Due to the different clamping levels in forward and reverse direction the **VESD09A4A-HSF** clamping behaviour is **Bi**directional and **As**ymmetrical (**BiAs**).

21003

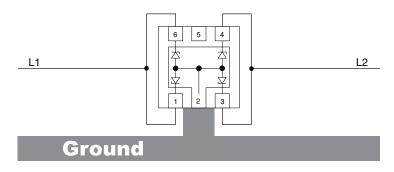
2

Vishay Semiconductors

Electrical Characteristics

Ratings at 25 °C, ambient temperature unless otherwise specified

VESD09A4A-HSF


BiAs mode: each input (pin 1, 3, 4 and 6) to ground (pin 2)

Parameter	Test conditions/remarks	Symbol	Min.	Тур.	Max.	Unit
Protection paths	number of line which can be protected	N lines			4	lines
Reverse stand-off voltage	at I _R = 0.1 μA	V _{RWM}	9			V
Reverse current	at $V_R = V_{RWM} = 9 V$	I _R		< 0.01	0.1	μΑ
Reverse breakdown voltage	at I _R = 1 mA	V _{BR}	11.2		13	V
Clamping voltage	at I _{PP} = 1.5 A, acc. IEC 61000-4-5	V _C			23	V
Forward clamping voltage	at I _F = 1.5 A, acc. IEC 61000-4-5	V _F			2	V
Capacitance	at V _R = 0 V; f = 1 MHz	C _D		6.2	10	pF
	at V _R = 4.5 V; f = 1 MHz	C _D		3.2	4	pF

If a higher surge current or Peak Pulse current (IPP) is needed, some protection diodes in the VESD09A4A-HSF can also be used in parallel in order to "multiply" the performance.

If two diodes are switched in parallel you get

- double surge power = double peak pulse current (2 x IppM)
- half of the line inductance = reduced clamping voltage
- half of the line resistance = reduced clamping voltage
- double line Capacitance (2 x C_D)
- double Reverse leakage current (2 x I_R)

21004

Vishay Semiconductors

Typical Characteristics

T_{amb} = 25 °C, unless otherwise specified

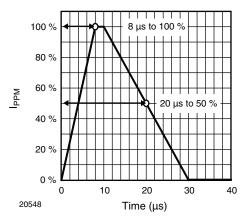


Figure 1. 8/20 µs Peak Pulse Current Wave Form acc. IEC 61000-4-5



Figure 2. ESD Discharge Current Wave Form acc. IEC 61000-4-2 (330 $\Omega/150$ pF)

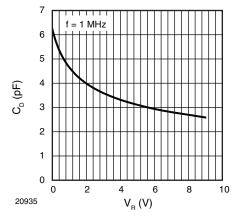


Figure 3. Typical Capacitance C_D vs. Reverse Voltage V_R

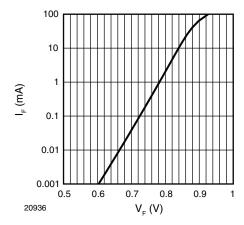


Figure 4. Typical Forward Current I_F vs. Forward Voltage V_F

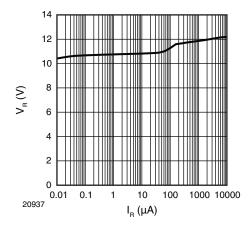


Figure 5. Typical Reverse Voltage V_R vs. Reverse Current I_R

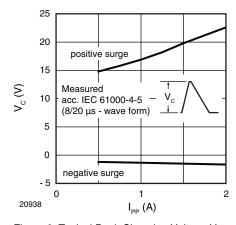


Figure 6. Typical Peak Clamping Voltage $V_{\rm C}$ vs. Peak Pulse Current $I_{\rm PP}$

Figure 7. Typical Clamping Performance at + 8 kV Contact Discharge (acc. IEC 61000-4-2)

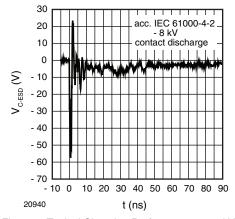
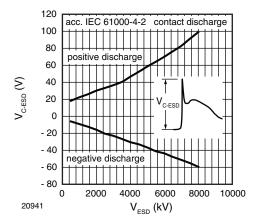
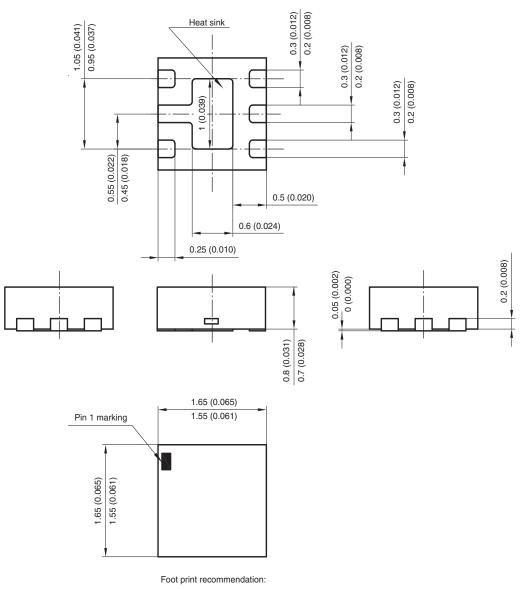
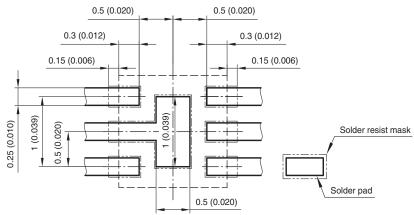


Figure 8. Typical Clamping Performance at - 8 kV Contact Discharge (acc. IEC 61000-4-2)




Figure 9. Typical Peak Clamping Voltage at ESD Contact Discharge (acc. IEC 61000-4-2)


VESD09A4A-HSF

Vishay Semiconductors

Package Dimensions in millimeters (inches): LLP75-6L

Document no.:S8-V-3906.02-010 (4) Created - Date: 04. MAY 2005 Rev. 4 - Date: 21. March 2006

20454

Rev. 1.3, 11-Jun-10

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Revision: 18-Jul-08

Document Number: 91000 www.vishay.com